The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308724 Sum of the prime parts in the partitions of n into 3 parts. 0
 0, 0, 0, 0, 2, 7, 11, 20, 22, 40, 39, 59, 61, 87, 89, 140, 137, 176, 178, 234, 236, 318, 313, 399, 401, 499, 501, 612, 614, 712, 714, 841, 843, 1012, 1003, 1178, 1180, 1338, 1340, 1567, 1556, 1751, 1753, 1989, 1991, 2270, 2272, 2574, 2576, 2902, 2904, 3247 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS FORMULA a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (i * A010051(i) + j * A010051(j) + (n-i-j) * A010051(n-i-j)). EXAMPLE Figure 1: The partitions of n into 3 parts for n = 3, 4, ...                                                           1+1+8                                                    1+1+7  1+2+7                                                    1+2+6  1+3+6                                             1+1+6  1+3+5  1+4+5                                      1+1+5  1+2+5  1+4+4  2+2+6                               1+1+4  1+2+4  1+3+4  2+2+5  2+3+5                        1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4          1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ... -----------------------------------------------------------------------   n  |     3      4      5      6      7      8      9     10      ... ----------------------------------------------------------------------- a(n) |     0      2      7     11     20     22     40     39      ... ----------------------------------------------------------------------- MATHEMATICA Table[Sum[Sum[i (PrimePi[i] - PrimePi[i - 1]) + j (PrimePi[j] - PrimePi[j - 1]) + (n - i - j) (PrimePi[n - i - j] - PrimePi[n - i - j - 1]), {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 50}] CROSSREFS Cf. A010051, A309405. Sequence in context: A097159 A139603 A141183 * A103182 A160698 A294114 Adjacent sequences:  A308721 A308722 A308723 * A308725 A308726 A308727 KEYWORD nonn AUTHOR Wesley Ivan Hurt, Aug 03 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 2 22:24 EDT 2020. Contains 333194 sequences. (Running on oeis4.)