%I #20 Jun 20 2019 08:05:23
%S 1,2,3,3,2,3,3,5,5,4,5,3,5,5,5,6,3,6,4,3,5,4,7,6,6,6,2,8,8,5,5,5,6,5,
%T 6,10,6,6,8,4,6,8,8,7,3,10,5,7,9,6,7,3,9,7,2,7,6,9,8,6,8,6,8,9,5,4,7,
%U 6,4,5,7,8,5,8,7,6,4,8,10,6,10,3,6,9,6,11,5,9,4,4,8,8,10,9,7,4,5,11,7,9,10
%N Number of ways to write 12*n+5 as (2^a*5^b)^2 + c^2 + d^2, where a,b,c,d are nonnegative integers with a > 0 and c <= d.
%C Conjecture 1: a(n) > 0 for all n = 0,1,2,.... Equivalently, for each nonnegative integer n we can write 3*n+1 as a*(a+1)/2 + b*(b+1)/2 + (2^c*5^d)^2 with a,b,c,d nonnegative integers.
%C Conjecture 2: For each n = 0,1,2,... we can write 24*n+10 as a^2 + b^2 + (2^c*3^d)^2 with a,b,c,d nonnegative integers and d > 0.
%C We have verified Conjectures 1 and 2 for n up to 2*10^8 and 10^8 respectively.
%C By the Gauss-Legendre theorem on sums of three squares, for each n = 0,1,... we can write 4*n+1 (or 4*n+2, or 8*n+3) as the sum of three squares.
%C Conjecture 1 holds for n < 8.33*10^9. - _Giovanni Resta_, Jun 19 2019
%H Zhi-Wei Sun, <a href="/A308661/b308661.txt">Table of n, a(n) for n = 0..10000</a>
%e a(0) = 1 with 12*0 + 5 = (2^1*5^0)^2 + 0^2 + 1^2.
%e a(4) = 2 with 12*4 + 5 = 53 = (2^1*5^0)^2 + 0^2 + 7^2 = (2^2*5^0)^2 + 1^2 + 6^2.
%e a(441019) = 2 with 12*441019 + 5 = 5292233 = (2^1*5^2)^2 + 513^2 + 2242^2 = (2^3*5^1)^2 + 757^2 + 2172^2.
%t SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
%t tab={};Do[r=0;Do[If[SQ[12n+5-4^a*25^b-x^2],r=r+1],{a,1,Log[4,12n+5]},{b,0,Log[25,(12n+5)/4^a]},{x,0,Sqrt[(12n+5-4^a*25^b)/2]}];tab=Append[tab,r],{n,0,100}];Print[tab]
%Y Cf. A000079, A000217, A000244, A000290, A000351, A000378, A001481, A308566, A308584, A308621, A308623, A308640, A308641, A308644, A308656, A308662.
%K nonn
%O 0,2
%A _Zhi-Wei Sun_, Jun 15 2019