login
A308620
Number of states in the evolutionary spatial prisoner's dilemma with n players.
1
2, 2, 2, 3, 4, 6, 9, 13, 19, 28, 42, 63, 95, 143, 216, 327, 496, 754, 1147, 1747, 2662, 4059, 6192, 9450, 14428, 22034, 33658, 51422, 78573, 120073, 183510, 280485, 428733, 655371, 1001854, 1531567, 2341417, 3579571, 5472565, 8366756
OFFSET
1,1
COMMENTS
Conjecture: satisfies a linear recurrence having signature (2, 0, -2, 1, 2, -2, 0, 0, 0, -1). - Harvey P. Dale, Aug 21 2021
LINKS
Burger, A. P. ; Van Der Merwe, M.; Van Vuuren, J. H. An asymptotic analysis of the evolutionary spatial prisoner’s dilemma on a path, Discrete Appl. Math. 160, No. 15, 2075-2088 (2012) Table 4.2
FORMULA
Conjecture: g.f. 2*x -x^2*(-2 +2*x +x^2 -2*x^3 +3*x^5 +x^7 +x^9)/ (x^5+x^2-1)/ (x^5-x^2+2*x-1) .
MAPLE
A308620 := proc(n)
add( binomial(n-3*i+2, 2*i-2) +binomial(floor((n-5*i+4)/2)+i-1, i-1), i=1..floor((n+4)/5)) ;
%+add(binomial(n-3*i-2, 2*i)+binomial(floor((n-5*i-2)/2)+i, i), i=1..floor((n-2)/5)) ;
%/2+1 ;
%+add(binomial(n-3*i, 2*i-1), i=1..floor((n+1)/5)) ;
end proc:
seq(A308620(n), n=1..40) ;
CROSSREFS
Sequence in context: A333374 A098523 A350514 * A339711 A048185 A368520
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jun 11 2019
STATUS
approved