OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..214
FORMULA
L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(k^(k-1))) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} (k^2 * x)^k/(1 - (k * x)^k). - Seiichi Manyama, Mar 16 2021
MATHEMATICA
sp[n_]:=Module[{d=Divisors[n]}, Table[d[[k]]^(d[[k]]+n), {k, Length[ d]}]] // Total; Array[sp, 15] (* Harvey P. Dale, Jan 02 2020 *)
a[n_] := DivisorSum[n, #^(# + n) &]; Array[a, 14] (* Amiram Eldar, May 11 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, d^(d+n));
(PARI) my(N=20, x='x+O('x^N)); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(k^(k-1))))))
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k^2*x)^k/(1-(k*x)^k))) \\ Seiichi Manyama, Mar 16 2021
(Python)
from sympy import divisors
def A308594(n): return sum(d**(d+n) for d in divisors(n, generator=True)) # Chai Wah Wu, Jun 19 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 09 2019
STATUS
approved