login
A308569
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*n).
3
1, 1, 2, 1, 5, 2, 1, 17, 28, 3, 1, 65, 730, 273, 2, 1, 257, 19684, 65793, 3126, 4, 1, 1025, 531442, 16781313, 9765626, 47450, 2, 1, 4097, 14348908, 4295032833, 30517578126, 2177317874, 823544, 4, 1, 16385, 387420490, 1099512676353, 95367431640626, 101560344351050, 678223072850, 16843009, 3
OFFSET
1,3
LINKS
FORMULA
L.g.f. of column k: -log(Product_{j>=1} (1 - (j^k*x)^j)^(1/j)).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
2, 5, 17, 65, 257, ...
2, 28, 730, 19684, 531442, ...
3, 273, 65793, 16781313, 4295032833, ...
2, 3126, 9765626, 30517578126, 95367431640626, ...
MATHEMATICA
T[n_, k_] := DivisorSum[n, #^(k*n) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
PROG
(PARI) T(n, k) = sumdiv(n, d, d^(k*n));
matrix(5, 5, n, k, T(n, k-1)) \\ Michel Marcus, Jun 08 2019
CROSSREFS
Columns k=0..2 give A000005, A023887, A308570.
Rows n=1..2 give A000012, A052539.
A(n,n) gives A308571.
Sequence in context: A281348 A371305 A308698 * A350073 A174978 A110874
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jun 08 2019
STATUS
approved