login
A308535
Expansion of e.g.f. 1/(1 - x)^log(1 + x) (even powers only).
0
1, 2, 22, 608, 31764, 2695992, 338441112, 58961602464, 13614906576528, 4024831155397536, 1482492491866434912, 665729215100873644800, 358022910151079384324928, 227174478580352888344068480, 167941710127005880795828894080, 143087068385495604780364250426880
OFFSET
0,2
FORMULA
a(n) = (2*n)! * [x^(2*n)] 1/(1 - x)^log(1 + x).
MATHEMATICA
nmax = 15; Table[(CoefficientList[Series[1/(1 - x)^Log[1 + x], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 06 2019
STATUS
approved