login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308527 Numbers that, for some x, are the concatenation of x+2, x+1 and x and are divisible by at least two of x+2, x+1 and x. 2
321, 432, 121110, 171615, 343332, 118117116, 232231230, 334333332, 333433333332, 452245214520, 333343333333332, 333334333333333332, 333333433333333333332, 333333343333333333333332 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For each d>=1, (10^(3*d)-4)/3+10^(2*d) (the concatenation of x+2, x+1 and x where x = (10^d-4)/3) is in the sequence, being divisible by x+1 and x+3.  Thus the sequence is infinite.

It appears that a(n) is of the form (10^(3*d)-4)/3+10^(2*d) for n >= 11. - Chai Wah Wu, Jun 19 2019

LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..56

EXAMPLE

232231230 is the concatenation of 232, 231 and 230, and is divisible by 231 and 230, so it is in the sequence.

MAPLE

f:=  proc(x)

  local t1, t2, q, a, b;

  t1:= 10^length(x);

  t2:= t1*10^length(x+1);

  q:= x*(1+t1+t2)+2*t2+t1;

    a:= (q/x)::integer;

  b:= (q/(x+1))::integer;

  if a and b then return q elif not(a) and not(b) then return NULL fi;

  if (q/(x+2))::integer then q else NULL fi

end proc:

map(f, [$1..10^8]);

CROSSREFS

Cf. A306643.

Subsequence of A127424.

Sequence in context: A174778 A300849 A261262 * A268517 A228226 A004927

Adjacent sequences:  A308524 A308525 A308526 * A308528 A308529 A308530

KEYWORD

nonn,base

AUTHOR

J. M. Bergot and Robert Israel, Jun 05 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 11 08:50 EDT 2020. Contains 335626 sequences. (Running on oeis4.)