login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308472 Numbers that are divisible by the sum of the digits of the product of their digits. 1
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 24, 25, 28, 36, 52, 54, 63, 99, 111, 112, 115, 125, 126, 132, 138, 152, 154, 156, 162, 165, 168, 182, 187, 189, 198, 212, 215, 216, 224, 234, 251, 252, 255, 261, 264, 276, 279, 297, 312, 318, 324, 333, 342, 354, 369, 372, 396, 432, 441 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

All terms are zeroless (A052382).

LINKS

David Consiglio, Jr., Table of n, a(n) for n = 1..6253

EXAMPLE

2771 is a term of this sequence because 2*7*7*1 = 98 --> 9 + 8 = 17 --> 2771 / 17 = 163.

MAPLE

d:= n-> convert(n, base, 10):

q:= n-> (m-> m>0 and irem(n, add(j, j=d(m)))=0)(mul(i, i=d(n))):

select(q, [$1..500])[];  # Alois P. Heinz, May 29 2019

PROG

(Python)

def dprod(n):

....x = str(n)

....start = 1

....for q in x:

........start *= int(q)

....return start

def dsum(n):

....x = str(n)

....start = 0

....for q in x:

........start += int(q)

....return start

seq_1 = [n for n in range(1, 10000) if dprod(n) != 0 and n % (dsum(dprod(n))) == 0]

print(seq_1)

(PARI) spd(n) = my(d=digits(n)); sumdigits(vecprod(d)); \\ A128212

isok(n) = my(p=spd(n)); p && (n % p == 0); \\ Michel Marcus, May 29 2019

(MAGMA) [n:n in [1..450]| not 0 in Intseq(n) and IsIntegral(n/(&+Intseq((&*(Intseq(n))))))]; // Marius A. Burtea, May 31 2019

CROSSREFS

Cf. A007602, A052382, A128212.

Sequence in context: A063527 A209933 A182183 * A064700 A180484 A007602

Adjacent sequences:  A308469 A308470 A308471 * A308473 A308474 A308475

KEYWORD

nonn,base

AUTHOR

David Consiglio, Jr., May 29 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 05:39 EDT 2019. Contains 328146 sequences. (Running on oeis4.)