The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308456 Numbers that cannot be written as a difference of 5-smooth numbers (A051037). 5
 281, 289, 353, 413, 421, 439, 443, 457, 469, 493, 541, 562, 563, 578, 581, 583, 641, 653, 661, 677, 683, 691, 701, 706, 707, 731, 733, 737, 751, 761, 769, 779, 787, 793, 803, 811, 817, 823, 826, 827, 829, 841, 842, 843, 853, 857, 867, 877, 878, 881, 883, 886 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Terms were found by generating in sequential order the 5-smooth numbers up to some limit and collecting the differences. The first 1000 candidates k were then proved to be correct by showing that each of the following congruences holds:   {5} +- k !== {2,3} mod 205910575871,   {3} +- k !== {2,5} mod 220411358713,   {2} +- k !== {3,5} mod 3019333681, where {a,b,...} represents the subgroup generated by a,b,... of the multiplicative subgroup modulo m. For a discussion iof this method of proof see A308247. LINKS Esteban Crespi de Valldaura, Table of n, a(n) for n = 1..1000 EXAMPLE 281 = A308247(3) cannot be written as the difference of 5-smooth numbers. All smaller numbers can; for example, 277 = 3^4*5 - 2^7, 271 = 2^3*5^3 - 3^6. PROG (PARI) \\ Computes the first N elements in the sequence. \\ At least the first 10000 are correct. N=100; \\computes the multiplicative subgroup generated \\by the elements of the vector L modulo m. SGR(L, m)={S=[1]; for(l=1, length(L), z=znorder(Mod(L[l], m)); T=[1]; for(t=1, z, s=lift(Mod(L[l], m)^t); if(setsearch(S, s), break, T=concat(T, s); )); for(t=1, length(T), S=Set(concat(S, lift(S*Mod(T[t], m)))))); S} m1=205910575871; L1= SGR([2, 3], m1); M1 = SGR([5], m1); m2=220411358713; L2= SGR([2, 5], m2); M2 = SGR([3], m2); m3=  3019333681; L3= SGR([3, 5], m3); M3 = SGR([2], m3); chkdif(k)={r=1;    D=1; while(gcd(k/D, 30)>1, D*=gcd(k/D, 30));    fordiv(D, d,      if(vecmax(factor(k/d+1)[, 1])<= 5 , r=0);      if(r, for(t=1, length(M1),        if(setsearch(L1, (M1[t]+k/d)%m1), r=0; break)));      if(r, for(t=1, length(M2),        if(setsearch(L2, (M2[t]+k/d)%m2), r=0; break)));      if(r, for(t=1, length(M3),        if(setsearch(L3, (M3[t]+k/d)%m3), r=0; break)));      if(r, for(t=1, length(M1),        if(setsearch(L1, (M1[t]-k/d)%m1), r=0; break)));      if(r, for(t=1, length(M2),        if(setsearch(L2, (M2[t]-k/d)%m2), r=0; break)));      if(r, for(t=1, length(M3),        if(setsearch(L3, (M3[t]-k/d)%m3), r=0; break)));      if(r==0, break)    );    r } for(k=1, m3, if(chkdif(k), print1(k, ", "); if(N--==0, break))); print(); CROSSREFS Cf. A051037 (5-smooth numbers). Cf. numbers not the difference of p-smooth numbers for other values of p: A101082 (p=2), A290365 (p=3), A326318 (p=7), A326319 (p=11), A326320 (p=13). Cf. A308247. Sequence in context: A294165 A259079 A296506 * A175145 A142444 A139655 Adjacent sequences:  A308453 A308454 A308455 * A308457 A308458 A308459 KEYWORD nonn AUTHOR Esteban Crespi de Valldaura, May 26 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 22:29 EST 2020. Contains 331322 sequences. (Running on oeis4.)