login
A308441
a(n) = (1/n!) * Sum_{i=n..n^2} b(i) where Sum_{i=n..n^2} b(i) * x^i/i! = (Sum_{i=1..n} binomial(n-1,i-1)*x^i/i!)^n.
1
1, 1, 7, 1653, 40206186, 208933247676473, 395488498710726039573053, 415462449496430820816987469491515317, 342970299885886953080843975129290159101335513911582, 299220423631045059715652854654572624968209204858890842067137945793201
OFFSET
0,3
LINKS
PROG
(PARI) {a(n) = sum(i=n, n^2, i!*polcoef(sum(j=1, n, binomial(n-1, j-1)*x^j/j!)^n, i))/n!}
CROSSREFS
Sequence in context: A191957 A125537 A264742 * A220989 A284705 A203012
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 27 2019
STATUS
approved