OFFSET
0,9
COMMENTS
Number of partitions of n into parts congruent to {0, 3, 5} mod 8.
Convolution inverse of A244465.
LINKS
Ludovic Schwob, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: 1 / Sum_{k>=0} (-x)^A074378(k).
G.f.: Product_{k>=1} 1 / ((1 - x^(8*k - 5)) * (1 - x^(8*k - 3)) * (1 - x^(8*k))).
a(n) ~ sqrt(sqrt(2) - 1) * exp(sqrt(n)*Pi/2) / (2^(9/4)*n). - Vaclav Kotesovec, May 25 2019
a(n) = a(n-3) + a(n-5) - a(n-14) - a(n-18) + + - - (with a(0)=1 and a(n) = 0 for negative n), where 3, 5, 14, 18, ... is the sequence A074378. - Ludovic Schwob, Aug 04 2021
EXAMPLE
For n=23 the a(23)=6 solutions are 3+3+3+3+3+3+5, 3+3+3+3+3+8, 3+3+3+3+11, 3+5+5+5+5, 5+5+5+8, and 5+5+13.
MATHEMATICA
nmax = 68; CoefficientList[Series[1/Sum[(-x)^(k (4 k + 1)), {k, -nmax, nmax}], {x, 0, nmax}], x]
nmax = 68; CoefficientList[Series[Product[1/((1 - x^(8 k - 5)) (1 - x^(8 k - 3)) (1 - x^(8 k))), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 68; CoefficientList[Series[Sum[PartitionsP[k] (-x)^k, {k, 0, nmax}]/Sum[PartitionsQ[2 k] (-x)^k, {k, 0, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 24 2019
STATUS
approved