login
A308380
E.g.f. A(x) satisfies: A(x) = x * Product_{k>=1} (1 + A(x^k))^(1/k).
1
1, 2, 9, 56, 455, 4224, 48391, 609104, 8814753, 140512400, 2483071481, 47387543928, 989622741367, 22107721563368, 530909919285495, 13581037512256544, 369627228319635329, 10633498287935101920, 323389433072136213289, 10342303284390333962600, 347514522157550224614711
OFFSET
1,2
FORMULA
E.g.f. A(x) satisfies: A(x) = x * exp(-Sum_{k>=1} Sum_{d|k} (-A(x^d))^(k/d) / k).
MATHEMATICA
terms = 21; A[_] = 0; Do[A[x_] = x Product[(1 + A[x^k])^(1/k), {k, 1, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] Range[0, terms]! // Rest
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 23 2019
STATUS
approved