The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308290 Expansion of Sum_{k>=1} mu(k)*log(1 + x^k/(1 - x^k)^3)/k. 1
 1, 2, 3, 1, -1, -6, -3, 2, 9, 9, -6, -24, -25, 16, 72, 75, -35, -213, -239, 78, 627, 767, -182, -1890, -2477, 355, 5847, 8109, -360, -18195, -26801, -1225, 56724, 89040, 11431, -177897, -297030, -61857, 560310, 994427, 284075, -1766754, -3338212, -1201932 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Inverse Euler transform of triangular numbers (A000217). LINKS FORMULA -1 + Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A000217. MATHEMATICA nmax = 44; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + x^k/(1 - x^k)^3]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest nmax = 50; s = ConstantArray[0, nmax]; Do[s[[j]] = j^2*(j + 1)/2 - Sum[s[[d]]*(j - d)*(j - d + 1)/2, {d, 1, j - 1}], {j, 1, nmax}]; Table[Sum[MoebiusMu[k/d]*s[[d]], {d, Divisors[k]}]/k, {k, 1, nmax}] (* Vaclav Kotesovec, Aug 10 2019 *) CROSSREFS Cf. A000217, A000294, A008683, A308291, A316152. Sequence in context: A140878 A182933 A068348 * A204167 A217897 A135900 Adjacent sequences:  A308287 A308288 A308289 * A308291 A308292 A308293 KEYWORD sign AUTHOR Ilya Gutkovskiy, May 18 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 16:42 EST 2020. Contains 331245 sequences. (Running on oeis4.)