login
A308243
Index of E-irregularity of prime(n).
1
0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 3, 1, 0, 1, 2, 2, 1, 1, 0, 1, 0, 3, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1
OFFSET
1,59
COMMENTS
A prime p >= 5 is an E-irregular prime if there is an even integer 2*k such that 2 <= 2*k <= p-3 and p divides E(2*k), where E(i) is the i-th Euler number (A000364). The pair (p, 2*k) is called an E-irregular pair. The number of such pairs for a given p is called the index of E-irregularity of p (cf. Ernvall, Metsänkylä, 1978, p. 618).
In other words, a prime p is E-irregular if its index of E-irregularity is > 0, which is the case if p is a term of A092218. Otherwise, p is E-regular and is a term of A092217.
LINKS
R. Ernvall and T. Metsänkylä, Cyclotomic invariants and E-irregular primes, Mathematics of Computation 32 (1978), 617-629.
PROG
(PARI) a000364(n) = subst(bernpol(2*n+1), 'x, 1/4)*4^(2*n+1)*(-1)^(n+1)/(2*n+1) \\ after Charles R Greathouse IV in A000364
a(n) = my(p=prime(n), e=2, i=0); while(e <= p-3, if(a000364(e)%p==0, i++); e=e+2); i
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, May 16 2019
STATUS
approved