login
A308218
Take the integer-sided obtuse triangles with perimeter n and sides a, b and c such that a <= b <= c. a(n) is the sum of all the b's.
0
0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 7, 0, 9, 9, 15, 11, 18, 18, 32, 21, 51, 30, 64, 41, 79, 62, 95, 77, 113, 93, 151, 124, 186, 144, 221, 177, 249, 225, 289, 253, 333, 310, 411, 343, 479, 390, 534, 456, 593, 527, 674, 605, 756, 667, 859, 733, 954, 826, 1049, 936
OFFSET
1,7
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1-sign(floor((i^2 + k^2)/(n-i-k)^2))) * sign(floor((i+k)/(n-i-k+1))) i.
MATHEMATICA
Table[Sum[Sum[i (1 - Sign[Floor[(i^2 + k^2)/(n - i - k)^2]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
CROSSREFS
Cf. A308216.
Sequence in context: A076563 A163974 A317443 * A067165 A079981 A117776
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 15 2019
STATUS
approved