login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308215 a(n) is the multiplicative inverse of A001844(n+1) modulo A001844(n); where A001844 is the sequence of centered square numbers. 4
0, 2, 12, 11, 39, 28, 82, 53, 141, 86, 216, 127, 307, 176, 414, 233, 537, 298, 676, 371, 831, 452, 1002, 541, 1189, 638, 1392, 743, 1611, 856, 1846, 977, 2097, 1106, 2364, 1243, 2647, 1388, 2946, 1541, 3261, 1702, 3592, 1871, 3939, 2048 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The sequence explores the relationship between the terms of A001844, the sums of consecutive squares. The sequence is an interleaving of A054552 (a number spiral arm) and (A001844-n). The gap between the lower values of A308215 and the upper values of A308217 increase by 3n; each successive gap increasing by 6.

LINKS

Table of n, a(n) for n=0..45.

Daniel Hoyt, Graph of A308215 and A308217 in relation to A001844

FORMULA

a(n) satisfies a(n)*(2*n*(n+1)+1) == 1 (mod 2*n*(n-1)+1).

Conjectures from Colin Barker, May 16 2019: (Start)

G.f.: x*(2 + 12*x + 5*x^2 + 3*x^3 + x^4 + x^5) / ((1 - x)^3*(1 + x)^3).

a(n) = (3 + (-1)^n + 2*(2+(-1)^n)*n + 2*(3+(-1)^n)*n^2) / 4 for n>0.

a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.

(End)

PROG

(Python 3)

import gmpy2

sos = [] # sum of squares

a=0

b=1

for i in range(50):

    c = a**2 + b**2

    sos.append(c)

    a +=1

    b +=1

ls = []

for i in range(len(sos)-1):

    c = gmpy2.invert(sos[i+1], sos[i])

    ls.append(int(c))

print(ls)

(PARI) f(n) = 2*n*(n+1)+1; \\ A001844

a(n) = lift(1/Mod(f(n+1), f(n))); \\ Michel Marcus, May 16 2019

CROSSREFS

Cf. A001844, A033951, A054552, A308217.

Sequence in context: A216349 A280015 A245281 * A216478 A181060 A171446

Adjacent sequences:  A308212 A308213 A308214 * A308216 A308217 A308218

KEYWORD

nonn

AUTHOR

Daniel Hoyt, May 15 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 23:37 EST 2020. Contains 338780 sequences. (Running on oeis4.)