

A308215


a(n) is the multiplicative inverse of A001844(n+1) modulo A001844(n); where A001844 is the sequence of centered square numbers.


4



0, 2, 12, 11, 39, 28, 82, 53, 141, 86, 216, 127, 307, 176, 414, 233, 537, 298, 676, 371, 831, 452, 1002, 541, 1189, 638, 1392, 743, 1611, 856, 1846, 977, 2097, 1106, 2364, 1243, 2647, 1388, 2946, 1541, 3261, 1702, 3592, 1871, 3939, 2048
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The sequence explores the relationship between the terms of A001844, the sums of consecutive squares. The sequence is an interleaving of A054552 (a number spiral arm) and (A001844n). The gap between the lower values of A308215 and the upper values of A308217 increase by 3n; each successive gap increasing by 6.


LINKS

Table of n, a(n) for n=0..45.
Daniel Hoyt, Graph of A308215 and A308217 in relation to A001844


FORMULA

a(n) satisfies a(n)*(2*n*(n+1)+1) == 1 (mod 2*n*(n1)+1).
Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: x*(2 + 12*x + 5*x^2 + 3*x^3 + x^4 + x^5) / ((1  x)^3*(1 + x)^3).
a(n) = (3 + (1)^n + 2*(2+(1)^n)*n + 2*(3+(1)^n)*n^2) / 4 for n>0.
a(n) = 3*a(n2)  3*a(n4) + a(n6) for n>6.
(End)


PROG

(Python 3)
import gmpy2
sos = [] # sum of squares
a=0
b=1
for i in range(50):
c = a**2 + b**2
sos.append(c)
a +=1
b +=1
ls = []
for i in range(len(sos)1):
c = gmpy2.invert(sos[i+1], sos[i])
ls.append(int(c))
print(ls)
(PARI) f(n) = 2*n*(n+1)+1; \\ A001844
a(n) = lift(1/Mod(f(n+1), f(n))); \\ Michel Marcus, May 16 2019


CROSSREFS

Cf. A001844, A033951, A054552, A308217.
Sequence in context: A216349 A280015 A245281 * A216478 A181060 A171446
Adjacent sequences: A308212 A308213 A308214 * A308216 A308217 A308218


KEYWORD

nonn


AUTHOR

Daniel Hoyt, May 15 2019


STATUS

approved



