login
A308185
Fixed point (beginning with a) of the morphism a -> abab, b -> b, over the alphabet {a,b} = {0,1}.
5
0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0
OFFSET
1
COMMENTS
It seems likely that this is the same sequence as A288932 without its leading 0, but the two definitions are so different that it is worth having both versions.
LINKS
M. Bucci, A. De Luca, A. Glen, and L. Q. Zamboni, A connection between palindromic and factor complexity using return words, arXiv:0802.1332 [math.CO], 2008. See Section 4.
A. Glen, J. Justin, S. Widmer, L. Q. Zamboni, Palindromic richness, arXiv:0801.1656 [math.CO], 2008.
MAPLE
f:= 'f':
f(0):= (0, 1, 0, 1):
f(1):= 1:
A:= [0]:
for i from 1 to 9 do A:= map(f, A) od:
A; # Robert Israel, Jun 05 2019
MATHEMATICA
Nest[Flatten[ReplaceAll[#, 0->{0, 1, 0, 1}]]&, {0}, 6] (* Paolo Xausa, Nov 08 2023 *)
CROSSREFS
Sequence in context: A286665 A096270 A334820 * A159689 A174282 A189301
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 05 2019
STATUS
approved