login
A308159
Sum of the largest sides of all integer-sided isosceles triangles with perimeter n.
1
0, 0, 1, 0, 2, 2, 6, 3, 7, 8, 14, 9, 16, 17, 25, 19, 28, 29, 40, 32, 43, 45, 58, 48, 62, 64, 79, 68, 84, 86, 104, 91, 109, 112, 132, 117, 138, 141, 163, 147, 170, 173, 198, 180, 205, 209, 236, 216, 244, 248, 277, 256, 286, 290, 322, 299, 331, 336, 370, 345
OFFSET
1,5
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * ([i=k] + [i=n-i-k] - [k=n-i-k]) * (n-i-k), where [] is the Iverson bracket.
Conjectures from Colin Barker, May 15 2019: (Start)
G.f.: x^3*(1 + 2*x^2 + x^3 + 4*x^4 + x^5 + x^6) / ((1 - x)^3*(1 + x)^2*(1 + x^2)^2*(1 + x + x^2)).
a(n) = a(n-3) + 2*a(n-4) - 2*a(n-7) - a(n-8) + a(n-11) for n>11.
(End)
MATHEMATICA
Table[Sum[Sum[(n - i - k) (KroneckerDelta[i, k] + KroneckerDelta[i, n - i - k] - KroneckerDelta[k, n - i - k]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
CROSSREFS
Cf. A308158.
Sequence in context: A028421 A263003 A344469 * A081745 A240578 A273105
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 14 2019
STATUS
approved