login
A308150
Numbers k such that sigma(k) mod k is prime, where sigma = A000203.
2
4, 8, 18, 20, 21, 27, 32, 35, 36, 39, 50, 55, 57, 63, 65, 77, 85, 98, 100, 104, 111, 115, 125, 128, 129, 155, 161, 171, 175, 185, 187, 189, 196, 201, 203, 205, 209, 221, 235, 237, 242, 245, 265, 275, 279, 291, 299, 305, 309, 319, 323, 324, 325, 327, 335, 338, 341, 365, 371, 377, 381, 385, 391
OFFSET
1,1
COMMENTS
Includes 1+A000668.
LINKS
EXAMPLE
a(3) = 18 is in the sequence because sigma(18) = 39, 39 == 3 (mod 18), and 3 is prime.
MAPLE
select(n -> isprime(numtheory:-sigma(n) mod n), [$2..1000]);
PROG
(PARI) isok(n) = isprime(sigma(n) % n); \\ Michel Marcus, May 15 2019
CROSSREFS
Includes A037020 and A075081.
Sequence in context: A107926 A174741 A312827 * A070213 A077474 A307817
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, May 14 2019
STATUS
approved