login
A308143
Take all the integer-sided triangles with perimeter n and squarefree sides a, b, and c such that a <= b <= c. a(n) is the sum of all the b's.
1
0, 0, 1, 0, 2, 2, 5, 3, 3, 0, 8, 5, 16, 11, 29, 18, 18, 12, 13, 7, 23, 23, 51, 35, 28, 20, 62, 44, 82, 79, 132, 98, 100, 75, 144, 108, 121, 80, 185, 131, 148, 87, 203, 145, 265, 200, 345, 264, 300, 214, 272, 187, 305, 274, 301, 216, 246, 210, 340, 258, 406
OFFSET
1,5
LINKS
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * mu(i)^2 * mu(k)^2 * mu(n-i-k)^2 * i, where mu is the Möbius function (A008683).
MAPLE
f:= proc(n)
local a, b, t;
t:= 0;
for a from 1 to n/3 do
if not a::squarefree then next fi;
for b from max(a, ceil((n+1)/2-a)) to (n-a)/2 do
if b::squarefree and (n-a-b)::squarefree then t:= t+b fi
od od;
t
end proc:
map(f, [$1..100]); # Robert Israel, May 09 2024
MATHEMATICA
Table[Sum[Sum[i* MoebiusMu[i]^2*MoebiusMu[k]^2*MoebiusMu[n - k - i]^2 *Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
CROSSREFS
Sequence in context: A146316 A258803 A157495 * A308515 A361328 A128134
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 14 2019
STATUS
approved