login
A308095
a(n) is the sum of sigma (i.e., A000203) over the totatives of n.
1
1, 1, 4, 5, 15, 7, 33, 19, 40, 26, 87, 27, 127, 50, 84, 82, 220, 59, 277, 90, 187, 140, 407, 103, 401, 193, 352, 207, 660, 127, 762, 309, 485, 339, 646, 244, 1098, 423, 677, 390, 1342, 268, 1480, 525, 758, 639, 1758, 416, 1666, 581, 1191, 770, 2250, 527, 1742, 821, 1527, 1016, 2786, 502, 3014
OFFSET
1,3
COMMENTS
a(n) <= A024916(n-1) for n >= 2, with equality if and only if n is prime.
FORMULA
a(n) = Sum_{1<=k<=n; gcd(k,n)=1} A000203(k).
EXAMPLE
a(3) = sigma(1) + sigma(2) = 4.
MAPLE
f:= proc(n) local k; add(numtheory:-sigma(k), k=select(t -> igcd(t, n)=1, [$1..n])) end proc;
map(f, [$1..100]);
PROG
(PARI) a(n) = sum(k=1, n, if (gcd(n, k)==1, sigma(k))); \\ Michel Marcus, May 13 2019
CROSSREFS
KEYWORD
nonn,look
AUTHOR
J. M. Bergot and Robert Israel, May 12 2019
STATUS
approved