login
A308073
Lexicographically earliest sequence of positive terms such that for any distinct m and n, a(m) + dup(a(m+1)) <> a(n) + dup(a(n+1)) (where dup corresponds to A020330).
2
1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 2, 2, 3, 2, 4, 2, 5, 2, 6, 3, 4, 3, 5, 3, 6, 4, 4, 5, 4, 6, 5, 5, 6, 6, 7, 3, 7, 4, 7, 5, 7, 6, 8, 3, 8, 4, 8, 5, 8, 6, 9, 3, 9, 4, 9, 5, 9, 6, 10, 3, 10, 7, 7, 8, 7, 9, 7, 10, 8, 8, 9, 8, 10, 9, 9, 10, 10, 11, 3
OFFSET
1,3
LINKS
EXAMPLE
The first terms, alongside a(n) + dup(a(n+1)), are:
n a(n) a(n)+dup(a(n+1))
-- ---- ----------------
1 1 4
2 1 11
3 2 5
4 1 16
5 3 6
6 1 37
7 4 7
8 1 46
9 5 8
10 1 55
PROG
(PARI) s=0; v=1; for(n=1, 84, print1(v", "); for (w=1, oo, if (!bittest(s, x=v+w*(1+2^#binary(w))), s+=2^x; v=w; break)))
CROSSREFS
See A308057 for other variants.
Cf. A020330.
Sequence in context: A162520 A342703 A249068 * A090331 A338759 A229994
KEYWORD
nonn,look,base
AUTHOR
Rémy Sigrist, May 11 2019
STATUS
approved