login
A308059
Lexicographically earliest sequence of positive terms such that for any distinct m and n, a(m) XOR (2*a(m+1)) <> a(n) XOR (2*a(n+1)) (where XOR denotes the bitwise XOR operator).
2
1, 1, 2, 1, 3, 1, 4, 1, 5, 4, 3, 6, 1, 8, 1, 9, 8, 2, 5, 8, 3, 10, 8, 8, 10, 10, 12, 12, 13, 8, 12, 16, 16, 17, 5, 13, 16, 18, 18, 20, 20, 21, 16, 20, 24, 24, 25, 16, 24, 27, 16, 25, 18, 26, 32, 32, 33, 1, 16, 32, 34, 34, 36, 36, 37, 1, 18, 32, 36, 40, 40, 41
OFFSET
1,3
LINKS
EXAMPLE
The first terms, alongside a(n) XOR (2*a(n+1)), are:
n a(n) a(n) XOR (2*a(n+1))
-- ---- -------------------
1 1 3
2 1 5
3 2 0
4 1 7
5 3 1
6 1 9
7 4 6
8 1 11
9 5 13
10 4 2
PROG
(PARI) s=0; v=1; for(n=1, 72, print1(v", "); for (w=1, oo, if (!bittest(s, x=bitxor(v, 2*w)), s+=2^x; v=w; break)))
CROSSREFS
See A308057 and A308058 for variants.
Sequence in context: A007381 A366877 A337377 * A361026 A319698 A096234
KEYWORD
nonn,look,base
AUTHOR
Rémy Sigrist, May 10 2019
STATUS
approved