%I #7 Jun 05 2021 14:34:41
%S 2,2,2,2,3,3,5,5,5,5,7,7,7,7,11,11,11,11,11,11,11,11,13,13,13,13,17,
%T 17,17,17,17,17,17,17,19,19,19,19,23,23,23,23,23,23,23,23,29,29,29,29,
%U 29,29,29,29,29,29,29,29,31,31,31,31,37,37,37,37,37,37
%N a(n) = nextprime(ceiling(n/2)-1), where nextprime(n) is the smallest prime > n.
%C For n >= 3, a(n) is the smallest prime appearing among the larger parts of the partitions of n into two parts.
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) = A151800(ceiling(n/2)-1).
%F a(n) = A151800(floor((n-1)/2)). - _Wesley Ivan Hurt_, Jun 05 2021
%e a(7) = 5; 7 has three partitions into two parts: (6,1), (5,2) and (4,3). The smallest prime among the larger parts is 5, so a(7) = 5.
%t Table[NextPrime[Ceiling[n/2] - 1, 1], {n, 100}]
%Y Cf. A151800.
%K nonn,easy
%O 1,1
%A _Wesley Ivan Hurt_, May 10 2019