OFFSET
1,1
COMMENTS
All the coreful perfect numbers (A307958) can be obtained from a primitive term k by multiplying it by m, if m is squarefree and coprime to k. The primitive terms are powerful. If k = m * r is in the sequence where r = rad(k) is the squarefree kernel of k (A007947), then the sum of the coreful divisors of k is csigma(k) = csigma(m * r) = sigma(m) * r, where sigma(m) is the sum of all the divisors of m (A000203). Thus k is a primitive coreful perfect number, iff sigma(m) * r = 2 * m * r, or m = k/rad(k) is a perfect number. Since k is powerful k = m * rad(m), thus all the primitive coreful perfect numbers can be generated from the perfect numbers by multiplying them by their squarefree kernel. The even terms of these sequence are (2^p) * (2^p-1)^2, were p is a Mersenne exponent (A000043). There is an odd term in this sequence iff there is an odd perfect number.
EXAMPLE
The first coreful perfect numbers are 36, 180 = 36*5, 252 = 36*7, 392, 396 = 36*11, 468 = 36*13, ... thus the primitive ones are 36, 392, ...
MATHEMATICA
f[p_] := 2^p*(2^p-1)^2; f/@MersennePrimeExponent/@Range[10] (* assuming no odd perfect number exists *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 08 2019
STATUS
approved