login
A307892
a(n) = lcm(tau(n), pod(n)) / n, where tau(k) = the number of divisors of k (A000005) and pod(n) = the product of divisors of k (A007955).
1
1, 1, 2, 6, 2, 6, 2, 8, 3, 10, 2, 144, 2, 14, 60, 320, 2, 324, 2, 1200, 84, 22, 2, 13824, 15, 26, 108, 2352, 2, 27000, 2, 3072, 132, 34, 140, 279936, 2, 38, 156, 64000, 2, 74088, 2, 5808, 4050, 46, 2, 26542080, 21, 7500, 204, 8112, 2, 157464, 220, 175616, 228
OFFSET
1,3
COMMENTS
n divides lcm(tau(n), pod(n)) for all n >= 1.
LINKS
FORMULA
a(n) = A324528(n) / n.
EXAMPLE
For n=4: a(4) = lcm(tau(4), pod(4))/4 = lcm(3, 8)/4 = 24/4 = 6.
MATHEMATICA
Table[(LCM[DivisorSigma[0, n], Times@@Divisors[n]])/n, {n, 60}] (* Harvey P. Dale, Sep 22 2024 *)
PROG
(Magma) [LCM(NumberOfDivisors(n), &*[d: d in Divisors(n)]) / n: n in [1.. 10^5]];
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 03 2019
STATUS
approved