OFFSET
1,3
COMMENTS
The corresponding record values are 0, 1, 2, 3, 4, 8, 20, 26, 48, 76, 112, 132, 208, ... (see the link for more values).
Deléglise et al. (2008) proved that the number of powerful (A001694) terms in this sequence is finite. They ask whether a(391) = 485432135516160000 (the 112th powerful term) is the largest. - Amiram Eldar, Aug 20 2019
Is abs(omega(a(n)) - omega(a(n+1))) <= 1? (Cf. A001221.) - David A. Corneth, Apr 16 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..884 (terms 1..762 from Amiram Eldar, calculated by Deléglise et al.)
M. Deléglise, M. O. Hernane, and J.-L. Nicolas, Grandes valeurs et nombres champions de la fonction arithmétique de Kalmár, Journal of Number Theory, Vol. 128, No. 6 (2008), pp. 1676-1716.
M. Deléglise, M. O. Hernane, and J.-L. Nicolas, Tables des 761 premiers champions de la fonction de Kalmar, alternative link.
Amiram Eldar, Table of n, a(n), A074206(a(n)), calculated by Deléglise et al.
T. M. A. Fink, Number of ordered factorizations and recursive divisors, arXiv:2307.16691 [math.NT], 2023.
FORMULA
MATHEMATICA
a[0] = 0; a[1] = 1; a[n_] := a[n] = Total[a /@ Most[Divisors[n]]]; s = {}; am=-1; Do[a1 = a[n]; If[a1>am, am=a1; AppendTo[s, n]], {n, 0, 10000}]; s
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 02 2019
STATUS
approved