login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307810 Expansion of 1/AGM(1-64*x, sqrt((1-16*x)*(1-256*x))). 2
1, 100, 13924, 2371600, 453093796, 92598490000, 19745403216400, 4333667896360000, 971177275449892900, 221106619001508490000, 50967394891692703241104, 11866732390447357481358400, 2785834789480617203561744656, 658549235163074008904405646400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See A246923.

Also the squares of coefficients in g.f. 1/sqrt((1-4*x)*(1-16*x)).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..416

FORMULA

a(n) = A307695(n)^2 = (Sum_{k=0..n} 4^(n-k)*3^k*binomial(n,k)*binomial(2k,k))^2 = (Sum_{k=0..n} 16^(n-k)*(-3)^k*binomial(n,k)*binomial(2k,k))^2.

a(n) ~ 2^(8*n+2) / (3*Pi*n). - Vaclav Kotesovec, Sep 27 2019

PROG

(PARI) N=20; x='x+O('x^N); Vec(1/agm(1-64*x, sqrt((1-16*x)*(1-256*x))))

(PARI) {a(n) = sum(k=0, n, 4^(n-k)*3^k*binomial(n, k)*binomial(2*k, k))^2}

(PARI) {a(n) = sum(k=0, n, 16^(n-k)*(-3)^k*binomial(n, k)*binomial(2*k, k))^2}

CROSSREFS

Cf. A307695.

(Sum_{k=0..n} c^(n-k)*e^k*binomial(n,k)*binomial(2k,k))^2 = (Sum_{k=0..n} d^(n-k)*(-e)^k*binomial(n,k)*binomial(2k,k))^2, where e = (d-c)/4: A002894 (c=0,d=4,e=1), A246467 (c=1,d=5,e=1), A246876 (c=2,d=6,e=1), A246906 (c=3,d=7,e=1), A307811 (c=5,d=9,e=1), A322240 (c=-3,d=5,e=2), A322243 (c=-1,d=7,e=2), A246923 (c=1,d=9,e=2), A248167 (c=3, d=11,e=2), A322247 (c=-1,d=11,e=3), this sequence (c=4,d=16,e=3), A322245 (c=-5,d=11,e=4), A322249 (c=-3,d=13,e=4).

Sequence in context: A267846 A267684 A267885 * A151648 A013747 A065447

Adjacent sequences:  A307807 A307808 A307809 * A307811 A307812 A307813

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Apr 30 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 00:29 EDT 2020. Contains 334747 sequences. (Running on oeis4.)