login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307803 Inverse binomial transform of least common multiple sequence. 1
1, -1, 3, 1, 41, 171, 799, 2633, 7881, 24391, 99611, 461649, 2252953, 10773491, 46602711, 176413201, 596116769, 1899975183, 6302881171, 24136694081, 105765310281, 476455493179, 2033813426063, 8019234229401, 29410337173561, 102444237073751, 347418130583499 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Jackson Earles, Aaron Li, Adam Nelson, Marlo Terr, Sarah Arpin, and Ilia Mishev Binomial Transforms of Sequences, CU Boulder Experimental Math Lab, Spring 2019.

FORMULA

a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*A003418(k+1).

Formula for values modulo 10: (Proof by considering the formula modulo 10)

    a(n) (mod 10) = 1, if n = 0, 3, 4 (mod 5),

    a(n) (mod 10) = 9, if n = 1 (mod 5),

    a(n) (mod 10) = 3, if n = 2 (mod 5).

EXAMPLE

For n = 3, a(3) = binomial(3,0)*1 - binomial(3,1)*2 + binomial(3,2)*6 - binomial(3,3)*12 = 1.

MAPLE

b:= proc(n) option remember; `if`(n=0, 1, ilcm(n, b(n-1))) end:

a:= n-> add(b(i+1)*binomial(n, i)*(-1)^i, i=0..n):

seq(a(n), n=0..30);  # Alois P. Heinz, Apr 29 2019

PROG

(Sage)

def SIbinomial_transform(N, seq):

    BT = [seq[0]]

    k = 1

    while k< N:

        next = 0

        j = 0

        while j <=k:

            next = next + (((-1)^j)*(binomial(k, j))*seq[j])

            j = j+1

        BT.append(next)

        k = k+1

    return BT

LCMSeq = []

for k in range(1, 26):

    LCMSeq.append(lcm(range(1, k+1)))

SIbinomial_transform(25, LCMSeq)

(PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*lcm(vector(k+1, i, i))); \\ Michel Marcus, Apr 30 2019

CROSSREFS

Inverse binomial transform of A003418 (shifted).

Sequence in context: A270132 A050817 A125082 * A136517 A104097 A155812

Adjacent sequences:  A307800 A307801 A307802 * A307804 A307805 A307806

KEYWORD

sign

AUTHOR

Sarah Arpin, Apr 29 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 17:24 EST 2019. Contains 329126 sequences. (Running on oeis4.)