login
A307774
Number of partitions of n into 3 parts such that the middle and largest parts are both prime.
0
0, 0, 0, 0, 1, 2, 2, 2, 3, 2, 4, 2, 3, 3, 5, 4, 6, 3, 5, 5, 7, 5, 8, 5, 8, 7, 10, 7, 9, 7, 10, 10, 12, 9, 13, 10, 14, 12, 14, 12, 15, 12, 16, 14, 17, 14, 18, 15, 20, 19, 23, 18, 21, 17, 22, 21, 24, 18, 22, 20, 26, 25, 28, 24, 29, 25, 31, 27, 29, 25, 30, 27
OFFSET
1,6
COMMENTS
Number of Goldbach partitions of [n-1, n-2, ..., n-floor(n/3)] into two parts whose smallest part is >= i, where i is the index in the list (i=1,2,..). For example, a(11)=4; The numbers 10, 9 and 8 contain a total of 4 Goldbach partitions into two parts whose smallest parts are greater than or equal to 1, 2, and 3 respectively. 10 = 7+3 = 5+5 (3,5 >= 1), 9 = 7+2 (2 >= 2), 8 = 5+3 (3 >= 3).
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} A010051(i) * A010051(n-k-i).
EXAMPLE
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 0 0 1 2 2 2 3 2 ...
-----------------------------------------------------------------------
- Wesley Ivan Hurt, Sep 07 2019
MATHEMATICA
Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[n - k - i] - PrimePi[n - k - i - 1]), {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
Table[Count[IntegerPartitions[n, {3}], _?(AllTrue[Most[#], PrimeQ]&)], {n, 80}] (* Harvey P. Dale, Sep 04 2024 *)
PROG
(PARI) a(n) = sum(k=1, n\3, sum(i=k, (n-k)\2, ispseudoprime(i)*ispseudoprime(n-k-i))) \\ Felix Fröhlich, Apr 29 2019
CROSSREFS
Cf. A010051.
Sequence in context: A156862 A318583 A076709 * A110021 A036013 A256587
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 27 2019
STATUS
approved