login
Number of palindromic hexagonal numbers with exactly n digits.
2

%I #18 Mar 02 2021 02:11:53

%S 3,1,0,2,2,2,4,0,0,3,1,0,3,1,2,1,4,1,2,1,2,0

%N Number of palindromic hexagonal numbers with exactly n digits.

%C Number of terms in A054969 with exactly n digits.

%H G. J. Simmons, <a href="/A002778/a002778_2.pdf">Palindromic powers</a>, J. Rec. Math., 3 (No. 2, 1970), 93-98. [Annotated scanned copy] See page 95.

%e There are only two 4-digit hexagonal numbers that are palindromic, 3003 and 5995. Thus, a(4)=2.

%t A054969 = {0, 1, 6, 66, 3003, 5995, 15051, 66066, 617716, 828828, 1269621, 1680861, 5073705, 5676765, 1264114621, 5289009825, 6172882716, 13953435931, 1313207023131, 5250178710525, 6874200024786, 61728399382716, 602224464422206, 636188414881636, 1250444114440521, 16588189498188561, 58183932923938185, 66056806460865066, 67898244444289876, 514816979979618415, 3075488771778845703, 6364000440440004636, 15199896744769899151}; Table[Length[ Select[A054969, IntegerLength[#] == n || (n == 1 && # == 0) &]], {n, 19}]

%o (Python)

%o def afind(terms):

%o m, n, c = 0, 1, 0

%o while n <= terms:

%o p = m*(2*m-1)

%o s = str(p)

%o if len(s) == n:

%o if s == s[::-1]: c += 1

%o else:

%o print(c, end=", ")

%o n, c = n+1, int(s == s[::-1])

%o m += 1

%o afind(14) # _Michael S. Branicky_, Mar 01 2021

%Y Cf. A000384, A054969, A054970, A082721, A263618, A307752.

%K nonn,base,more

%O 1,1

%A _Robert Price_, Apr 27 2019

%E a(20)-a(22) from _Michael S. Branicky_, Mar 01 2021