OFFSET
1,2
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Giorgos Kalogeropoulos, Hostile Divisor Numbers, Code Golf, May 2019.
EXAMPLE
9566 is such a number because its divisors are 1, 2, 4783 and 9566, and no two of them share the same digit.
MAPLE
filter:= proc(n) local D, i, j;
D:= map(t -> convert(convert(t, base, 10), set), convert(numtheory:-divisors(n), list));
for i from 2 to nops(D) do
for j from 1 to i-1 do
if D[i] intersect D[j] <> {} then return false fi
od od;
true
end proc:
select(filter, [$1..1000]); # Robert Israel, Jul 07 2019
MATHEMATICA
Select[Range@1000, !Or@@IntersectingQ@@@Subsets[IntegerDigits@Divisors[#], {2}]&]
PROG
(PARI) isok(k) = {my(d = divisors(k), dd = apply(x->Set(digits(x)), d)); for (i=1, #dd, for (j=i+1, #dd, if (#setintersect(dd[i], dd[j]), return (0)); ); ); return (1); } \\ Michel Marcus, Jul 07 2019
(Python)
from itertools import count, combinations, islice
from sympy import divisors
def A307636gen(): return filter(lambda n:all(len(set(s[0])&set(s[1])) == 0 for s in combinations((str(d) for d in divisors(n, generator=True)), 2)), count(1))
A307636_list = list(islice(A307636gen(), 20)) # Chai Wah Wu, Dec 08 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Giorgos Kalogeropoulos, May 03 2019
STATUS
approved