login
A307598
Number of partitions of n into 3 distinct positive triangular numbers.
12
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 1, 1, 0, 3, 0, 2, 1, 1, 1, 1, 2, 1, 2, 1, 0, 3, 1, 0, 4, 1, 2, 1, 1, 1, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 2, 2, 2, 1, 3, 2, 0, 4, 1, 1, 5, 1, 3, 2, 2, 3, 2, 2, 1, 4, 1, 2, 4, 2, 2, 3, 2, 1, 3, 2, 4, 3, 3, 2, 2, 3, 1, 6
OFFSET
0,20
COMMENTS
The greedy inverse starts 0, 10, 19, 37, 52, 82, 109, 136, 241, 226, 217, 247, 364, 427, 457, 541, 532, 577, 637, 961, 721, 787, 1066, 1102, 1381, 1267, 1564, 1192, 1396, 1816, 1501, 1612, 1927, 1942, 2242, 1792, 2842, 2587, 2557, 2422, ... - R. J. Mathar, Apr 28 2020
FORMULA
a(n) = [x^n y^3] Product_{k>=1} (1 + y*x^(k*(k+1)/2)).
EXAMPLE
a(19) = 2 because we have [15, 3, 1] and [10, 6, 3].
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 17 2019
STATUS
approved