%I #5 Apr 14 2019 07:51:44
%S 1,1,2,4,7,12,21,37,66,118,210,373,662,1175,2087,3709,6592,11714,
%T 20813,36977,65695,116722,207389,368486,654716,1163271,2066840,
%U 3672256,6524693,11592791,20597577,36596883,65023721,115531233,205270716,364715855,648010941,1151357116
%N G.f. A(x) satisfies: A(x) = 1/(1 + (-x)^a(0)/(1 + (-x)^a(1)/(1 + (-x)^a(2)/(1 + (-x)^a(3)/(1 + ...))))), a continued fraction.
%e G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 12*x^5 + 21*x^6 + 37*x^7 + 66*x^8 + ... = 1/(1 - x/(1 - x/(1 + x^2/(1 + x^4/(1 - x^7/(1 + ...)))))).
%Y Cf. A213411.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Apr 14 2019