The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307532 a(n) is the smallest k > 2^(2^n)+1 such that 2^(k-1) == 1 (mod (2^(2^n)-1)*k). 1
 5, 7, 29, 281, 65617, 4294967681, 18446744073709552577, 340282366920938463463374607431768211841, 115792089237316195423570985008687907853269984665640564039457584007913129642241 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n) is smallest k > 2^(2^n)+1 such that k == 1 (mod 2^n) and 2^(k-1) == 1 (mod k), so a(n) is an odd prime or a Fermat pseudoprime to base 2. a(n) is the least k = 2^(2^n) + m*2^n + 1 for m > 0 such that 2^(k-1) == 1 (mod k). The values of m = (a(n)-2^(2^n)-1)/2^n are 2, 1, 3, 3, 5, 12, 15, 3, 9, 202, 56, 304, 635, 11095, 8948, ...; is m = A307535(n) for all n > 4? Conjecture: a(n) is prime for all n >= 0. LINKS FORMULA a(n) == 1 (mod 2^n). MATHEMATICA a[n_] := Module[{k = 2^(2^n) + 2}, While[PowerMod[2, k - 1, (2^(2^n) - 1)*k] != 1, k++]; k]; Array[a, 10, 0] PROG (PARI) a(n) = my(k=2^(2^n)+2);  while( Mod(2, (2^(2^n)-1)*k)^(k-1) != 1, k++); k; \\ Michel Marcus, Apr 25 2019 CROSSREFS Cf. A001567, A065091, A307512, A307535. Sequence in context: A171619 A153411 A081630 * A135324 A107639 A069688 Adjacent sequences:  A307529 A307530 A307531 * A307533 A307534 A307535 KEYWORD nonn AUTHOR Amiram Eldar and Thomas Ordowski, Apr 13 2019 EXTENSIONS a(8) from Chai Wah Wu, Apr 29 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 02:14 EDT 2020. Contains 336310 sequences. (Running on oeis4.)