|
|
A307421
|
|
Dirichlet g.f.: zeta(s) * zeta(3*s) / zeta(2*s).
|
|
1
|
|
|
1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1
|
|
COMMENTS
|
Dirichlet convolution of A008966 and A010057.
|
|
LINKS
|
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Vaclav Kotesovec, Graph - the asymptotic ratio
Eric Weisstein's World of Mathematics, Dirichlet Generating Function
Wikipedia, Dirichlet series
|
|
FORMULA
|
a(n) = abs(A210826(n)).
Sum_{k=1..n} a(k) ~ 6*zeta(3)*n/Pi^2 + zeta(1/3)*n^(1/3)/zeta(2/3).
|
|
MATHEMATICA
|
Table[DivisorSum[n, Boole[IntegerQ[#^(1/3)]] * Abs[MoebiusMu[n/#]]&], {n, 1, 100}]
|
|
PROG
|
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1+X)/(1-X^3))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
|
|
CROSSREFS
|
Cf. A010057, A008966, A210826, A299406.
Sequence in context: A014677 A307425 A210826 * A299406 A287769 A267866
Adjacent sequences: A307418 A307419 A307420 * A307422 A307423 A307424
|
|
KEYWORD
|
nonn,mult
|
|
AUTHOR
|
Vaclav Kotesovec, Apr 08 2019
|
|
STATUS
|
approved
|
|
|
|