login
A307414
Numbers k such that A014285(k) and A007504(k) are coprime.
3
2, 3, 6, 7, 10, 11, 12, 14, 15, 18, 19, 22, 23, 24, 27, 30, 31, 32, 34, 35, 38, 39, 40, 44, 46, 47, 48, 51, 52, 55, 56, 58, 59, 60, 63, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 92, 94, 95, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114, 115, 116, 118, 119, 120, 122
OFFSET
1,1
COMMENTS
Numbers k such that A306834(k) = A014285(k).
No terms == 1 (mod 4).
Numbers k such that A309036(k)=1. - Robert Israel, Jul 09 2019
LINKS
EXAMPLE
a(3) = 6 is a term because A007504(6) = 41 and A014285(6) = 184 are coprime.
MAPLE
N:= 1000: # for terms <= N
Primes:= map(ithprime, [$1..N]):
S1:= ListTools:-PartialSums(Primes):
S2:= ListTools:-PartialSums(zip(`*`, Primes, [$1..N])):
select(t -> igcd(S1[t], S2[t])=1, [$1..N]);
MATHEMATICA
okQ[n_] := With[{pp = Prime[Range[n]]}, CoprimeQ[Total[pp], Total[pp.Range[n]]]];
Select[Range[200], okQ] (* Jean-François Alcover, Dec 05 2023 *)
PROG
(PARI) isok(k) = my(vp=primes(k)); gcd(sum(i=1, k, vp[i]), sum(i=1, k, i*vp[i])) == 1; \\ Michel Marcus, Apr 07 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Apr 07 2019
STATUS
approved