|
|
A307395
|
|
Expansion of 1/((1 - x) * ((1 - x)^3 + x^3)).
|
|
2
|
|
|
1, 4, 10, 19, 28, 28, 1, -80, -242, -485, -728, -728, 1, 2188, 6562, 13123, 19684, 19684, 1, -59048, -177146, -354293, -531440, -531440, 1, 1594324, 4782970, 9565939, 14348908, 14348908, 1, -43046720, -129140162, -258280325, -387420488, -387420488, 1, 1162261468
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 0..4000
Index entries for linear recurrences with constant coefficients, signature (4,-6,3).
|
|
FORMULA
|
a(n) = Sum_{k=0..floor(n/3)} (-1)^k*binomial(n+3,3*k+3).
a(n) = 4*a(n-1) - 6*a(n-2) + 3*a(n-3) for n > 2.
a(6*n) = 1.
|
|
PROG
|
(PARI) {a(n) = sum(k=0, n\3, (-1)^k*binomial(n+3, 3*k+3))}
(PARI) N=66; x='x+O('x^N); Vec(1/((1-x)*((1-x)^3+x^3)))
|
|
CROSSREFS
|
Column 5 of A307394.
Partial sums of A057083.
Sequence in context: A073262 A145731 A162958 * A029714 A062198 A050858
Adjacent sequences: A307392 A307393 A307394 * A307396 A307397 A307398
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
Seiichi Manyama, Apr 07 2019
|
|
STATUS
|
approved
|
|
|
|