login
Partial sums of A307203.
1

%I #14 Sep 30 2023 16:26:35

%S 1,4,11,21,35,56,82,114,152,198,249,305,366,437,510,588,672,766,861,

%T 961,1068,1185,1302,1424,1554,1694,1833,1977,2130,2293,2454,2620,2796,

%U 2982,3165,3353,3552,3761,3966,4176,4398,4630,4857,5089,5334,5589,5838,6092

%N Partial sums of A307203.

%C Computed by _Davide M. Proserpio_ using ToposPro, Apr 01 2019

%H Rémy Sigrist, <a href="/A307273/b307273.txt">Table of n, a(n) for n = 0..1000</a>

%F Conjectures from _Colin Barker_, Apr 04 2019: (Start)

%F G.f.: (1 + 2*x + 5*x^2 + 5*x^3 + 7*x^4 + 8*x^5 + 4*x^6 + 8*x^7 + 3*x^8 + 4*x^9 + 2*x^10 - x^12 + x^13 - 4*x^14 + 2*x^15 - 2*x^16) / ((1 - x)^3*(1 + x)*(1 + x^2)^2).

%F a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-5) + 2*a(n-6) - 2*a(n-7) + a(n-8) for n>16.

%F (End)

%t LinearRecurrence[{2,-2,2,0,-2,2,-2,1},{1,4,11,21,35,56,82,114,152,198,249,305,366,437,510,588,672},50] (* _Harvey P. Dale_, Sep 30 2023 *)

%Y Cf. A307203.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Apr 02 2019

%E More terms from _Rémy Sigrist_, Apr 04 2019