login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307243 An irregular fractal binary sequence embedding three copies of itself. See comments for precise definition. 1

%I #21 Apr 13 2019 22:12:46

%S 1,0,1,1,1,0,0,1,1,1,1,0,1,1,0,1,0,1,0,0,1,1,1,1,1,0,0,1,1,1,0,1,1,1,

%T 0,1,1,1,0,1,0,1,1,0,0,1,1,1,1,1,1,0,1,0,1,1,0,0,1,0,1,1,1,1,0,0,1,0,

%U 1,0,0,1,1,1,0,0,1,1,1,1,0,1,1,1,0,1,1,1,1,0,1,1,0,1,0,1,0,0,1,1,1,1,1,1,1,0,0,1,1,0

%N An irregular fractal binary sequence embedding three copies of itself. See comments for precise definition.

%C The sequence has the following property: if a(n) = 0, underline a(n+1); if a(n) = 1, underline a(n+2). The terms underlined twice are the original sequence (copy #1), the terms underlined once are also (copy #2) and the non-underlined also (copy #3).

%C From _Lars Blomberg_: (Start)

%C I think this idea can be generalized:

%C Select some k >= 1, for example 2.

%C Initialize S = (k)(k-1)...0, for example S=210, and evaluate the underlining: the underlined amount is shown after '.', S=210.3

%C Initialize the "fetch pointers", f0=k, f1...fk=0 (using 0-based indexing);

%C Let p be the pointer to the next term to be evaluated, start with p=k=2;

%C The term indexed by p is shown in [], and the values of f0...fk are shown in ();

%C So for 210.[3]-(200), the underlined count is 3 - we should take the value from f2 which is 2, and calculate its underlining:

%C 2102.[0]01-(201). Next is 0 so we take from f0:

%C 21020.[1]1-(301) and so on.

%C Note that before «.» are the terms, and after «.» are the underlined, so a single array will suffice to store everything.

%C For k=2, I get:

%C 2 1 0 2 2 2 2 1 0 1 2 2 2 2 2 2 1 0 0 1 1 2 2 0 2 2 1 2 1 2 0 2 2 2 1 0 2 2 2 0 2 1 2 2 2 1 2 2 1 2 2 0 1 0 0 2 0 2 1 1 1 2 1 1 2 2 2 0 2 2 2 2 2 1 0 2 0 2 2 2 2 0 2 2 2 1 2 2 1 2 2 2 2 1 2 2 1 2 1 2 0 1 2 2 0 0 1 2 0 1 0 1 2 0 2 0 2 1 2 2 1 1 2 1 0 2 2 2 2 1 1 0 2 2 0 2 2 2 2 2 0 1 2 2 1 2 2 2 2 2 1 0 2 2 2 2 0 1 2 2 1 2 2 2 2

%C And for k=3:

%C 3 2 1 0 3 3 3 3 3 2 1 0 2 3 3 3 2 3 3 3 1 3 2 3 0 3 2 2 3 1 1 0 2 3 3 2 2 3 0 3 3 3 3 3 2 3 3 3 3 3 1 3 3 2 1 3 1 3 0 3 2 3 3 3 0 2 2 2 3 1 1 0 0 2 3 2 3 2 1 3 3 1 1 0 3 0 3 2 2 3 2 2 3 3 3 2 0 3 3 2 3 3 2 0 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 1 3 1 3 2 1 3 3 3 2 3 1 3 3 0 3 2 3 3 2 3 3 3 3 3 0 0 3 2 3 3 2 1 2 3 3 2 3 3 2 2 1 3 1 1

%C (End)

%H Lars Blomberg, <a href="/A307243/b307243.txt">Table of n, a(n) for n = 1..1000</a>

%e The sequence starts with 1,0,1,1,1,0,0,1,1,1,1,0,1,1,0,1,...

%e Instead of underlining them, we will put () around the terms we want to emphasize.

%e a(1) = 1 produces parentheses around a(3):

%e 1,0,(1),1,1,0,0,1,1,1,1,0,1,1,0,1,...

%e a(2) = 0 produces parentheses around a(3) again:

%e 1,0,((1)),1,1,0,0,1,1,1,1,0,1,1,0,1,...

%e a(3) = 1 produces parentheses around a(5):

%e 1,0,((1)),1,(1),0,0,1,1,1,1,0,1,1,0,1,...

%e a(4) = 1 produces parentheses around a(6):

%e 1,0,((1)),1,(1),(0),0,1,1,1,1,0,1,1,0,1,...

%e a(5) = 1 produces parentheses around a(7):

%e 1,0,((1)),1,(1),(0),(0),1,1,1,1,0,1,1,0,1,...

%e a(6) = 0 produces parentheses around a(7) again:

%e 1,0,((1)),1,(1),(0),((0)),1,1,1,1,0,1,1,0,1,...

%e a(7) = 0 produces parentheses around a(8):

%e 1,0,((1)),1,(1),(0),((0)),(1),1,1,1,0,1,1,0,1,...

%e a(8) = 1 produces parentheses around a(10):

%e 1,0,((1)),1,(1),(0),((0)),(1),1,(1),1,0,1,1,0,1,...

%e a(9) = 1 produces parentheses around a(11):

%e 1,0,((1)),1,(1),(0),((0)),(1),1,(1),(1),0,1,1,0,1,...

%e a(10) = 1 produces parentheses around a(12):

%e 1,0,((1)),1,(1),(0),((0)),(1),1,(1),(1),(0),1,1,0,1,...

%e a(11) = 1 produces parentheses around a(13):

%e 1,0,((1)),1,(1),(0),((0)),(1),1,(1),(1),(0),(1),1,0,1,...

%e a(12) = 0 produces parentheses around a(13) again:

%e 1,0,((1)),1,(1),(0),((0)),(1),1,(1),(1),(0),((1)),1,0,1,...

%e a(13) = 1 produces parentheses around a(15):

%e 1,0,((1)),1,(1),(0),((0)),(1),1,(1),(1),(0),((1)),(1),(0),1,...

%e a(14) = 1 produces parentheses around a(16):

%e 1,0,((1)),1,(1),(0),((0)),(1),1,(1),(1),(0),((1)),(1),(0),(1),...

%e a(15) = 0 produces parentheses around a(16) again:

%e 1,0,((1)),1,(1),(0),((0)),(1),1,(1),(1),(0),((1)),(1),(0),((1)),...

%e Etc.

%e We see in this small example that the doubly parenthesized terms of the last line slowly reconstruct the starting sequence:

%e ((1)), ((0)), ((1)), ((1)), ...

%e The same holds for the singly parenthesized terms:

%e (1), (0), (1), (1), (1), (0), (1), (0), ...

%e And again by the non-parenthesized terms:

%e 1, 0, 1, 1, ...

%Y Cf. A307183 (no distinction between underlined once or twice: two copies only of the starting sequence).

%K base,nonn,nice

%O 1

%A _Eric Angelini_ and _Lars Blomberg_, Mar 30 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 07:44 EDT 2024. Contains 371922 sequences. (Running on oeis4.)