login
A307152
a(n) = floor((A002144(n)+19)/24).
1
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 7, 7, 8, 8, 8, 9, 10, 10, 10, 11, 12, 12, 12, 13, 13, 14, 14, 15, 15, 16, 17, 17, 17, 17, 18, 18, 19, 19, 20, 22, 22, 23, 24, 24, 24, 25, 25, 26, 26
OFFSET
1,4
COMMENTS
This sequence arises in several different contexts [Kramer].
The number of occurrences of k in the sequence is A296021(6*k) - A296021(6*k-6). - Robert Israel, Mar 31 2019
Original name was: "Floor( (q+19)/24 ) where q is a prime == 1 (mod 4)." - Robert Israel, Apr 07 2019
LINKS
Jürg Kramer, On the linear independence of certain theta-series, Mathematische Annalen 281.2 (1988): 219-228. See page 226.
MAPLE
map(t -> floor((t+19)/24), select(isprime, [seq(i, i=1..1000, 4)])); # Robert Israel, Mar 31 2019
MATHEMATICA
Table[Floor[(q + 19)/24], {q, Select[Range[1, 650, 4], PrimeQ]}] (* Michael De Vlieger, Mar 31 2019 *)
CROSSREFS
Sequence in context: A226033 A054404 A334415 * A008671 A199017 A189709
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 31 2019
STATUS
approved