login
A307127
Expansion of Product_{j>=1} 1/(1 - (-1 + Product_{k>=1} 1/(1 - x^k))^j).
6
1, 1, 4, 14, 48, 161, 535, 1759, 5742, 18619, 60030, 192526, 614537, 1953064, 6182342, 19497895, 61282168, 191995744, 599721399, 1868049926, 5803381167, 17984273654, 55601057973, 171516227866, 527968915206, 1621949729945, 4973174537640, 15220730405484, 46502692854974
OFFSET
0,3
FORMULA
G.f.: p(p(x) - 1), where p(x) = g.f. of A000041 (partitions numbers).
MATHEMATICA
nmax = 28; CoefficientList[Series[Product[1/(1 - (-1 + Product[1/(1 - x^k), {k, 1, nmax}])^j), {j, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A047135 A331319 A291254 * A248957 A127359 A289928
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 26 2019
STATUS
approved