login
A307084
Expansion of 1/(1 - 1^1*x/(1 - 2^2*x/(1 - 3^3*x/(1 - 4^4*x/(1 - 5^5*x/(1 - ...)))))), a continued fraction.
3
1, 1, 5, 133, 31769, 95375641, 4353388262525, 3536446917781244413, 58773633134246903294470769, 22612364832863674279489837434733681, 224919094724957152626614652086970769074005045, 63900685361274641827300282511815586348785532532913331893
OFFSET
0,3
LINKS
FORMULA
a(n) ~ A002109(n). - Vaclav Kotesovec, Apr 15 2021
MATHEMATICA
nmax = 11; CoefficientList[Series[1/(1 + ContinuedFractionK[-k^k x, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
PROG
(PARI) a(n) = my(A=1+O(x)); for(i=1, n, A=1-(n-i+1)^(n-i+1)*x/A); polcoef(1/A, n); \\ Seiichi Manyama, Apr 15 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 23 2019
STATUS
approved