Program:
(PARI) 
va(n) = my(u=[]); for(i=0, n-1, if(!sum(j=0, n-1, gcd(j,n)==1&&issquare(Mod(j,n))&&(i*j)%n<i), u=concat(u, [i]))); u
vb(n) = my(u=[]); forstep(i=1, 4*n-3, 4, if(!sum(j=0, 4*n-1, gcd(j,4*n)==1&&issquare(Mod(j,4*n))&&(i*j)%(4*n)<i), u=concat(u, [i]))); u
ga(n) = print1("x^2 - c: "); print1(va(n)); print(" (mod ", n, ")")
gb(n) = print1("x^2 - x - (c - 1)/4: "); print1(vb(n)); print(" (mod ", 4*n, ")")
ext(n) = print("Z_", n, "[x]/f(x), where f(x) = "); if(n%2, ga(n), if(n%4==2, ga(n/2); gb(n), ga(n); gb(n/2))); print("Total number = ", if(n%2, #va(n), if(n%4==2, #va(n/2)+#vb(n), #va(n)+#vb(n/2))))


n = 1:
Z_1[x]/f(x), where f(x) =
x^2 - c: [0] (mod 1)
Total number = 1

n = 2:
Z_2[x]/f(x), where f(x) =
x^2 - c: [0] (mod 1)
x^2 - x - (c - 1)/4: [1, 5] (mod 8)
Total number = 3

n = 3:
Z_3[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 3)
Total number = 3

n = 4:
Z_4[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3] (mod 4)
x^2 - x - (c - 1)/4: [1, 5] (mod 8)
Total number = 6

n = 5:
Z_5[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 5)
Total number = 3

n = 6:
Z_6[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 3)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21] (mod 24)
Total number = 9

n = 7:
Z_7[x]/f(x), where f(x) =
x^2 - c: [0, 1, 3] (mod 7)
Total number = 3

n = 8:
Z_8[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7] (mod 8)
x^2 - x - (c - 1)/4: [1, 5] (mod 16)
Total number = 10

n = 9:
Z_9[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 6] (mod 9)
Total number = 5

n = 10:
Z_10[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 5)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 21, 25] (mod 40)
Total number = 9

n = 11:
Z_11[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 11)
Total number = 3

n = 12:
Z_12[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] (mod 12)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21] (mod 24)
Total number = 18

n = 13:
Z_13[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 13)
Total number = 3

n = 14:
Z_14[x]/f(x), where f(x) =
x^2 - c: [0, 1, 3] (mod 7)
x^2 - x - (c - 1)/4: [1, 5, 17, 21, 29, 49] (mod 56)
Total number = 9

n = 15:
Z_15[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 7, 10, 11] (mod 15)
Total number = 9

n = 16:
Z_16[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14] (mod 16)
x^2 - x - (c - 1)/4: [1, 5] (mod 32)
Total number = 14

n = 17:
Z_17[x]/f(x), where f(x) =
x^2 - c: [0, 1, 3] (mod 17)
Total number = 3

n = 18:
Z_18[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 6] (mod 9)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21, 33, 45, 57, 69] (mod 72)
Total number = 15

n = 19:
Z_19[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 19)
Total number = 3

n = 20:
Z_20[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 15] (mod 20)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 21, 25] (mod 40)
Total number = 18

n = 21:
Z_21[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 7, 9, 10, 14] (mod 21)
Total number = 9

n = 22:
Z_22[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 11)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 33, 77] (mod 88)
Total number = 9

n = 23:
Z_23[x]/f(x), where f(x) =
x^2 - c: [0, 1, 5] (mod 23)
Total number = 3

n = 24:
Z_24[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] (mod 24)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21] (mod 48)
Total number = 30

n = 25:
Z_25[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 5, 10] (mod 25)
Total number = 5

n = 26:
Z_26[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 13)
x^2 - x - (c - 1)/4: [1, 5, 13, 29, 33, 65] (mod 104)
Total number = 9

n = 27:
Z_27[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 6, 9, 18] (mod 27)
Total number = 7

n = 28:
Z_28[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 21] (mod 28)
x^2 - x - (c - 1)/4: [1, 5, 17, 21, 29, 49] (mod 56)
Total number = 18

n = 29:
Z_29[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 29)
Total number = 3

n = 30:
Z_30[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 7, 10, 11] (mod 15)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21, 25, 29, 33, 41, 45, 53, 61, 65, 73, 85, 93, 105] (mod 120)
Total number = 27

n = 31:
Z_31[x]/f(x), where f(x) =
x^2 - c: [0, 1, 3] (mod 31)
Total number = 3

n = 32:
Z_32[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28] (mod 32)
x^2 - x - (c - 1)/4: [1, 5] (mod 64)
Total number = 18

n = 33:
Z_33[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 7, 11, 22] (mod 33)
Total number = 9

n = 34:
Z_34[x]/f(x), where f(x) =
x^2 - c: [0, 1, 3] (mod 17)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 41, 85] (mod 136)
Total number = 9

n = 35:
Z_35[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 7, 14, 15] (mod 35)
Total number = 9

n = 36:
Z_36[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21, 24, 27, 30, 33] (mod 36)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21, 33, 45, 57, 69] (mod 72)
Total number = 30

n = 37:
Z_37[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 37)
Total number = 3

n = 38:
Z_38[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 19)
x^2 - x - (c - 1)/4: [1, 5, 13, 33, 57, 133] (mod 152)
Total number = 9

n = 39:
Z_39[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 6, 7, 13, 14, 26] (mod 39)
Total number = 9

n = 40:
Z_40[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 20, 21, 22, 25, 26, 30, 31, 35] (mod 40)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 21, 25] (mod 80)
Total number = 30

n = 41:
Z_41[x]/f(x), where f(x) =
x^2 - c: [0, 1, 3] (mod 41)
Total number = 3

n = 42:
Z_42[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 7, 9, 10, 14] (mod 21)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21, 29, 33, 37, 45, 49, 65, 73, 77, 93, 105, 133, 161] (mod 168)
Total number = 27

n = 43:
Z_43[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 43)
Total number = 3

n = 44:
Z_44[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 7, 8, 11, 13, 14, 22, 33] (mod 44)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 33, 77] (mod 88)
Total number = 18

n = 45:
Z_45[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 15, 18, 21, 30, 33] (mod 45)
Total number = 15

n = 46:
Z_46[x]/f(x), where f(x) =
x^2 - c: [0, 1, 5] (mod 23)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 69, 161] (mod 184)
Total number = 9

n = 47:
Z_47[x]/f(x), where f(x) =
x^2 - c: [0, 1, 5] (mod 47)
Total number = 3

n = 48:
Z_48[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46] (mod 48)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21] (mod 96)
Total number = 42

n = 49:
Z_49[x]/f(x), where f(x) =
x^2 - c: [0, 1, 3, 7, 21] (mod 49)
Total number = 5

n = 50:
Z_50[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 5, 10] (mod 25)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 21, 25, 65, 85, 105, 125] (mod 200)
Total number = 15

n = 51:
Z_51[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 7, 9, 17, 34] (mod 51)
Total number = 9

n = 52:
Z_52[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 7, 8, 10, 13, 26, 39] (mod 52)
x^2 - x - (c - 1)/4: [1, 5, 13, 29, 33, 65] (mod 104)
Total number = 18

n = 53:
Z_53[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 53)
Total number = 3

n = 54:
Z_54[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 6, 9, 18] (mod 27)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21, 33, 45, 57, 69, 81, 117, 153, 189] (mod 216)
Total number = 21

n = 55:
Z_55[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 10, 11, 22] (mod 55)
Total number = 9

n = 56:
Z_56[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 21, 22, 24, 28, 29, 31, 35, 42, 49] (mod 56)
x^2 - x - (c - 1)/4: [1, 5, 17, 21, 29, 49] (mod 112)
Total number = 30

n = 57:
Z_57[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 10, 19, 38] (mod 57)
Total number = 9

n = 58:
Z_58[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 29)
x^2 - x - (c - 1)/4: [1, 5, 17, 21, 29, 145] (mod 232)
Total number = 9

n = 59:
Z_59[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 59)
Total number = 3

n = 60:
Z_60[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 28, 29, 30, 33, 34, 35, 39, 40, 44, 45, 50, 55] (mod 60)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21, 25, 29, 33, 41, 45, 53, 61, 65, 73, 85, 93, 105] (mod 120)
Total number = 54

n = 61:
Z_61[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 61)
Total number = 3

n = 62:
Z_62[x]/f(x), where f(x) =
x^2 - c: [0, 1, 3] (mod 31)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 93, 217] (mod 248)
Total number = 9

n = 63:
Z_63[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 21, 27, 30, 42] (mod 63)
Total number = 15

n = 64:
Z_64[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56] (mod 64)
x^2 - x - (c - 1)/4: [1, 5] (mod 128)
Total number = 22

n = 65:
Z_65[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 10, 13, 26] (mod 65)
Total number = 9

n = 66:
Z_66[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 7, 11, 22] (mod 33)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21, 29, 33, 37, 45, 57, 73, 77, 89, 121, 165, 209, 253] (mod 264)
Total number = 27

n = 67:
Z_67[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 67)
Total number = 3

n = 68:
Z_68[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 12, 15, 17, 34, 51] (mod 68)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 41, 85] (mod 136)
Total number = 18

n = 69:
Z_69[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 7, 15, 23, 46] (mod 69)
Total number = 9

n = 70:
Z_70[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 7, 14, 15] (mod 35)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 21, 25, 29, 37, 41, 49, 57, 61, 77, 85, 105, 145, 217, 245] (mod 280)
Total number = 27

n = 71:
Z_71[x]/f(x), where f(x) =
x^2 - c: [0, 1, 7] (mod 71)
Total number = 3

n = 72:
Z_72[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69] (mod 72)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21, 33, 45, 57, 69] (mod 144)
Total number = 50

n = 73:
Z_73[x]/f(x), where f(x) =
x^2 - c: [0, 1, 5] (mod 73)
Total number = 3

n = 74:
Z_74[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 37)
x^2 - x - (c - 1)/4: [1, 5, 17, 21, 37, 185] (mod 296)
Total number = 9

n = 75:
Z_75[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 7, 10, 11, 15, 25, 30, 35, 50, 55] (mod 75)
Total number = 15

n = 76:
Z_76[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 6, 7, 8, 13, 19, 38, 57] (mod 76)
x^2 - x - (c - 1)/4: [1, 5, 13, 33, 57, 133] (mod 152)
Total number = 18

n = 77:
Z_77[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 6, 7, 11, 14, 33] (mod 77)
Total number = 9

n = 78:
Z_78[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 6, 7, 13, 14, 26] (mod 39)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21, 29, 33, 37, 41, 61, 65, 69, 73, 117, 169, 221, 273] (mod 312)
Total number = 27

n = 79:
Z_79[x]/f(x), where f(x) =
x^2 - c: [0, 1, 3] (mod 79)
Total number = 3

n = 80:
Z_80[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 24, 25, 26, 30, 31, 32, 34, 35, 40, 42, 44, 50, 52, 60, 62, 70] (mod 80)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 21, 25] (mod 160)
Total number = 42

n = 81:
Z_81[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 6, 9, 18, 27, 54] (mod 81)
Total number = 9

n = 82:
Z_82[x]/f(x), where f(x) =
x^2 - c: [0, 1, 3] (mod 41)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 41, 205] (mod 328)
Total number = 9

n = 83:
Z_83[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 83)
Total number = 3

n = 84:
Z_84[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 26, 28, 29, 33, 35, 36, 40, 42, 43, 47, 49, 56, 63, 70, 77] (mod 84)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21, 29, 33, 37, 45, 49, 65, 73, 77, 93, 105, 133, 161] (mod 168)
Total number = 54

n = 85:
Z_85[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 15, 17, 34] (mod 85)
Total number = 9

n = 86:
Z_86[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2] (mod 43)
x^2 - x - (c - 1)/4: [1, 5, 13, 33, 129, 301] (mod 344)
Total number = 9

n = 87:
Z_87[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 10, 29, 58] (mod 87)
Total number = 9

n = 88:
Z_88[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 16, 17, 19, 22, 26, 28, 33, 44, 55, 66, 77] (mod 88)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 33, 77] (mod 176)
Total number = 30

n = 89:
Z_89[x]/f(x), where f(x) =
x^2 - c: [0, 1, 3] (mod 89)
Total number = 3

n = 90:
Z_90[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 15, 18, 21, 30, 33] (mod 45)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21, 25, 29, 33, 41, 45, 53, 57, 61, 65, 69, 73, 85, 93, 105, 117, 129, 153, 165, 189, 213, 225, 249, 285, 345] (mod 360)
Total number = 45

n = 91:
Z_91[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 7, 13, 14, 39] (mod 91)
Total number = 9

n = 92:
Z_92[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 7, 10, 20, 23, 46, 69] (mod 92)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 69, 161] (mod 184)
Total number = 18

n = 93:
Z_93[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 9, 11, 13, 31, 62] (mod 93)
Total number = 9

n = 94:
Z_94[x]/f(x), where f(x) =
x^2 - c: [0, 1, 5] (mod 47)
x^2 - x - (c - 1)/4: [1, 5, 21, 33, 141, 329] (mod 376)
Total number = 9

n = 95:
Z_95[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 5, 7, 10, 14, 19, 38] (mod 95)
Total number = 9

n = 96:
Z_96[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92] (mod 96)
x^2 - x - (c - 1)/4: [1, 5, 9, 13, 17, 21] (mod 192)
Total number = 54

n = 97:
Z_97[x]/f(x), where f(x) =
x^2 - c: [0, 1, 5] (mod 97)
Total number = 3

n = 98:
Z_98[x]/f(x), where f(x) =
x^2 - c: [0, 1, 3, 7, 21] (mod 49)
x^2 - x - (c - 1)/4: [1, 5, 17, 21, 29, 49, 77, 105, 217, 245] (mod 392)
Total number = 15

n = 99:
Z_99[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 5, 6, 7, 9, 11, 15, 18, 21, 22, 33, 66] (mod 99)
Total number = 15

n = 100:
Z_100[x]/f(x), where f(x) =
x^2 - c: [0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 15, 20, 25, 30, 40, 50, 55, 65, 75] (mod 100)
x^2 - x - (c - 1)/4: [1, 5, 13, 17, 21, 25, 65, 85, 105, 125] (mod 200)
Total number = 30