login
A306962
Trajectory of 4 under repeated application of x -> A306958(x).
3
4, 5040, 35282, 1845540, 1884971, 7867460, 3331441, 12260, 151391, 3659790, 8044561, 2005931, 3659862, 5776650, 1572481, 2454590, 3699451, 7444810, 2434331, 12340, 5861, 1995850, 9132491, 7263470, 1366651, 484580, 3669121, 3932030, 3631052, 182981, 7257710, 1844741, 2434340, 16651, 332660, 303931, 3630971, 4386251, 2001700, 604904, 3790082, 6048812, 3785141, 2455220, 65791, 4415050, 70572, 1239931, 7259150, 4294181, 5453390, 3695761, 4566970, 4571281, 2454590, 3699451, 7444810, 2434331, 12340, 5861
OFFSET
1,1
COMMENTS
After 20 iterations the trajectory a cycle of length 39 starting with 5861.
More than the usual number of terms are shown in order to display a full cycle.
REFERENCES
P. Kiss, A generalization of a problem in number theory, Math. Sem. Notes Kobe Univ., 5 (1977), no. 3, 313-317. MR 0472667 (57 #12362).
LINKS
P. Kiss, A generalization of a problem in number theory, [Hungarian], Mat. Lapok, 25 (No. 1-2, 1974), 145-149.
H. J. J. te Riele, Iteration of number-theoretic functions, Nieuw Archief v. Wiskunde, (4) 1 (1983), 345-360. See Example I.1.d.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
MATHEMATICA
a[n_]:=Total[Binomial[10, #]*#!&/@IntegerDigits[n]]; NestWhileList[a, 4, UnsameQ, All] (* Ray Chandler, Nov 30 2023 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Mar 18 2019
STATUS
approved