

A306955


Let f map k to the sum of the factorials of the digits of k (A061602); sequence lists numbers such that f(f(f(k)))=k.


5




OFFSET

1,2


COMMENTS

Kiss showed that there are no further terms and in fact there are no further cycles other than those shown in A014080 and A254499.


REFERENCES

P. Kiss, A generalization of a problem in number theory, Math. Sem. Notes Kobe Univ., 5 (1977), no. 3, 313317. MR 0472667 (57 #12362).


LINKS

Table of n, a(n) for n=1..7.
P. Kiss, A generalization of a problem in number theory, [Hungarian], Mat. Lapok, 25 (No. 12, 1974), 145149.
G. D. Poole, Integers and the sum of the factorials of their digits, Math. Mag., 44 (1971), 278279, [JSTOR].
H. J. J. te Riele, Iteration of numbertheoretic functions, Nieuw Archief v. Wiskunde, (4) 1 (1983), 345360. See Example I.1.b.


EXAMPLE

The map f sends 169 to 363601 to 1454 to 169 ...


MATHEMATICA

f[k_] := Total[IntegerDigits[k]!]; Select[Range[400000], Nest[f, #, 3] == # &] (* Amiram Eldar, Mar 17 2019 *)


PROG

(PARI) a061602(n) = my(d=digits(n)); sum(i=1, #d, d[i]!)
is(n) = a061602(a061602(a061602(n)))==n \\ Felix FrÃ¶hlich, May 18 2019


CROSSREFS

Cf. A061602.
The fixed points and loops of length 2 can be found in A014080, A214285, and A254499.
Sequence in context: A093002 A074319 A188284 * A228507 A254499 A071064
Adjacent sequences: A306952 A306953 A306954 * A306956 A306957 A306958


KEYWORD

nonn,fini,full,base


AUTHOR

N. J. A. Sloane, Mar 17 2019


STATUS

approved



