login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306948 Expansion of e.g.f. (1 + x)*log(1 + x)*exp(x). 0
0, 1, 3, 5, 8, 9, 19, -15, 216, -1407, 11803, -108483, 1106192, -12363703, 150381243, -1977666743, 27965386320, -423158076351, 6822782712723, -116781368777867, 2114916140765496, -40404117909336247, 812091479233464131, -17130720178674680031, 378423227774537955688 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..24.

FORMULA

a(n) = Sum_{k=0..n} Stirling1(n,k)*A000110(k)*k.

a(n) = Sum_{k=1..n} (-1)^(k-1)*binomial(n,k)*(n - k + 1)*(k - 1)!.

a(n) ~ exp(-1) * (-1)^n * n! / n^2. - Vaclav Kotesovec, Mar 18 2019

MAPLE

a:=series((1 + x)*log(1 + x)*exp(x), x=0, 25): seq(n!*coeff(a, x, n), n=0..24); # Paolo P. Lava, Mar 26 2019

MATHEMATICA

nmax = 24; CoefficientList[Series[(1 + x) Log[1 + x] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!

Table[Sum[StirlingS1[n, k] BellB[k] k, {k, 0, n}], {n, 0, 24}]

Table[Sum[(-1)^(k - 1) Binomial[n, k] (n - k + 1) (k - 1)!, {k, 1, n}], {n, 0, 24}]

CROSSREFS

Cf. A000110, A002741, A048994, A070071, A216313.

Sequence in context: A018804 A032682 A022769 * A067241 A120943 A087792

Adjacent sequences:  A306945 A306946 A306947 * A306949 A306950 A306951

KEYWORD

sign

AUTHOR

Ilya Gutkovskiy, Mar 17 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 07:41 EST 2019. Contains 329914 sequences. (Running on oeis4.)