login
A306909
Primes p such that Omega(p + 1)^(p - 1) == 1 (mod p^2), where Omega is A001222.
0
2, 11, 1093, 3511, 20771, 534851, 1006003, 3152573
OFFSET
1,1
COMMENTS
a(9) > 807795277 if it exists.
a(9) > 3.5*10^12 if it exists. - Giovanni Resta, Apr 09 2019
EXAMPLE
A001222(20772) = 5 and 5^(20771-1) == 1 (mod 20771^2), so 20771 is a term of the sequence.
MATHEMATICA
Select[Prime@ Range@ 230000, PowerMod[ PrimeOmega[# + 1], #-1, #^2] == 1 &] (* Giovanni Resta, Apr 09 2019 *)
PROG
(PARI) forprime(p=1, , if(Mod(bigomega(p+1), p^2)^(p-1)==1, print1(p, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Felix Fröhlich, Mar 16 2019
STATUS
approved