OFFSET
0,2
COMMENTS
Next term is too long to be included.
FORMULA
a(n) = (n!)^(3*n^2) * Product_{i=1..n, j=1..n, k=1..n} (1 + 1/(i*j*k)).
a(n) ~ exp(3*n^2*log(Gamma(n+1)) + (gamma + PolyGamma(0, n+1))^3 - c), where gamma is the Euler-Mascheroni constant A001620 and c = A307106 = Sum_{k>=2} (-1)^k * Zeta(k)^3 / k = 1.836921908595663783265640880112170343162564662453544904457...
a(n) ~ (2*Pi)^(3*n^2/2) * exp(-3*n^3 + n/4 + (log(n))^3 + 3*gamma*(log(n))^2 + gamma^3 - c) * n^(3*(n^3 + n^2/2 + gamma^2)).
MATHEMATICA
Table[Product[i*j*k+1, {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 5}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 25 2019
STATUS
approved