login
A306900
a(n) is the total number of sum of weighted records over set partitions of [n].
0
0, 1, 6, 32, 169, 921, 5248, 31388, 197133, 1298804, 8962070, 64646382, 486545028, 3813611643, 31075203744, 262802902944, 2303066401903, 20883838079019, 195682855232648, 1892280736283390, 18862445424597027, 193603796552389848, 2044036227150998116, 22177186058234124636
OFFSET
0,3
LINKS
Walaa Asakly, Sum of weighted records in set partitions, arXiv:1906.00680 [math.CO], 2019.
FORMULA
a(n) = 3*(B(n+3) - B(n+2))/4 - (n+7/4)*B(n+1) - (n+1)*B(n)/2 where B(n) is the n-th Bell number, A000110(n).
PROG
(PARI) B(n) = sum(k=0, n, stirling(n, k, 2)); \\ A000110
a(n) = 3*(B(n+3) - B(n+2))/4 - (n+7/4)*B(n+1) - (n+1)*B(n)/2;
CROSSREFS
Cf. A000110.
Sequence in context: A082585 A084326 A199699 * A137637 A125190 A264460
KEYWORD
nonn
AUTHOR
Michel Marcus, Jun 04 2019
STATUS
approved